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Introduction

System of systems (SoS), either directed as a program, acknowledged 
as a set of programs or emergent as in collaborative or virtualas a set of programs, or emergent as in collaborative or virtual 
varieties*, ALL need a way to assess software performance (SWP):

• Assess causes of SWP issues
• Determine indicators and measures of SWP
• Plan SWP measurement in tests

Fundamental question: Will software enable planned capabilities 
within end-to-end field environment?

We provide a 10-step method for planning/assessing SWP, allowing for 
respective improvement of architecture and test processesp p p

Our method is based on experience within a major directed SoS Service 
Orientated Architecture (SOA) DoD acquisition program

* S “E l i E t i S t f S t d S t d S ft A hit t ” b P l C Cl t SEI 2009
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* See “Exploring Enterprise, System of Systems, and System and Software Architectures” by Paul C. Clements, SEI, 2009.



Illuminating the Software Performance ‘Cave’ 
Requirements X Test EventsLate Project

Test 
Events^

Design DocumentsTest 
Events^^

j

Unknown, 
UndefinedUndefined

Unknown but  
(Partially to 
Fully) Defined

Unknown,Unknown, 
Undefined

*= Partially to Fully based on fidelity and thoroughness
^= focused, lower fidelity
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^^=Higher fidelity/scale



Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key 
3 - Make sample 

scenarios:
4 - Make list of 

metrics (indicate 
layout 

performance view
resource limiters 

from layout
What are sources 

of performance 
impacts in each?

sources, 
architecture ties if 

known)

6 - Find test events 7 - Circulate 5 - Add in required 
that have occurred:
Rate the maturity of 

each for each 
metric

results/vetting: 
What metrics and 

events are 
missing?

SWP metrics from 
documents (quality/ 

best practice/ 
critical resources) g)

8 - Use populated 
t i t i t 9 - Use architecture metrics matrix to 

plan future tests 
and mine data from 
existing data sets

tie-ins to improve 
software 

performance

10 - Determine 
repeat schedule
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An Example SoS Layout

This schematic represents the SoS
t t i hi h th l ft

System of Systems

context in which the example software 
was delivered

System Applications using services reside at 
the system level and assume services 

are instantiated on blades

System

Processing Unit

Blade Middleware

(Blade) OS(Blade) OS

This is one of multiple context views 
i d it h t ll

Service
Instance of 
Discoverable 

Service

required; it was chosen to allow 
further break down of performance 

affecting sources
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Notional SoS Layout: On a Processing Unit

Blade Server
Processing Unit 

(or Rack)

Blade in same 
Processing Unit

( )

Fiber Channel or similar 
Interface to Shared RAID

This schematic providesFirewall + Router with LAN (Gigabit  This schematic provides 
processor level SoS

context fidelity
Faster Slower

Ethernet et al.) Interfaces
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Notional SoS Layout: A System
P i U itProcessing Unit

Shared 
RAID

System
Processing 

Unit

System

System Firewall+ Router+ 
Radio Short Range

+Short Range Wireless 
WAN Delays

System Firewall+ Router+ 
Radio Long Range

+Long Range Wireless
WAN Delays

S lli Li k

Note: The delay to the 
WAN interface 
processing units are the 
same but performance

System Firewall+ Router+ 
Radio Satellite

+Satellite Link 
WAN Delays

same but performance 
will need to add WAN 
delays for each link

Faster Slower
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Faster Slower



Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key 
3 - Make sample 

scenarios:
4 - Make list of 

metrics (indicate 
layout performance 

view
resource limiters 

from layout
What are sources 

of performance 
impacts in each?

sources, 
architecture ties if 

known)

6 - Find test events 7 - Circulate 5 - Add in required 
that have occurred:
Rate the maturity of 

each for each 
metric

results/vetting: 
What metrics and 

events are 
missing?

SWP metrics from 
documents (quality/ 

best practice/ 
critical resources) g)

8 - Use populated 
t i t i t 9 - Use architecture metrics matrix to 

plan future tests 
and mine data from 
existing data sets

tie-ins to improve 
software 

performance

10 - Determine 
repeat schedule
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Software/Hardware Performance Planning
Counter clock-wise, 

faster to slower
DRAM

~1 micro-

Human 
Interactions

FLASH

System 
Over GiG

1 micro
second

~ 100 microseconds

>1 second

1 second 
to minutes

Blade
System

Over GiG
(Indirect)Processor~ 100 

microseconds

>1 second<1 microsecond System 
Over GiG
(Direct)

~1 millisecond 5

RAID
(HDs) System on 

Same 

System on 
Different 
Platform

~1 millisecond ~ 5 
milliseconds

0.1 to 1 second

Notional Representation
Blue =No data
Orange = Simulated Data
Green: Live Data

Designers should manage access 
to slower methods when possible

Platform Platform

9
SSTC 2010
J. Wessel, B. Meyer  May 2010
© 2010 Carnegie Mellon University

Green: Live Data to slower methods when possible



Scale Issues

The work of each blade (CPU/memory/
LAN utilization middleware etc ) willLAN utilization, middleware, etc.) will 
increase based upon 

• total number of systems in the 
t f tsystem of systems 

• how often the users need 
services in other systems/

i it /bl dprocessing units/blades

Each increase in scale increases 
resource needs per service 
hosting blade
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Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key 
3 - Make sample 

scenarios:
4 - Make list of 

metrics (indicate 
layout performance 

view
resource limiters 

from layout
What are sources 
of performance 

impacts in each?

sources, 
architecture ties if 

known)

6 - Find test events 7 - Circulate 5 - Add in required 
that have occurred:
Rate the maturity of 

each for each 
metric

results/vetting: 
What metrics and 

events are 
missing?

SWP metrics from 
documents (quality/ 

best practice/ 
critical resources) g)

8 - Use populated 
t i t i t 9 - Use architecture metrics matrix to 

plan future tests 
and mine data from 
existing data sets

tie-ins to improve 
software 

performance

10 - Determine 
repeat schedule
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A Possible Scenario - 1

User 1 on 
Blade A on PU1

User 2 on Blade B 
on PU2

User 1 Requests Data from User 2
Where is software performance

on PU2
Start End

Instance of Instance of  Where is software performance 
affected (delayed)?

Discovered 
Service

Middleware

OS

Discovered 
Service

Middleware

OS OSOS

Over Air

System 1 System 2
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A Possible Scenario - 2

h ffWhat metrics affect 
software 

performance in 

User 1 to User 2, examples:
• On Blade A: Service Call to Middleware

previous scenario?

• Delays Between Blade & Processing Unit
• Delays on Short Range Router/FW /Radio 1
• Delays on Short Range Router/FW /Radio 2• Delays on Short Range Router/FW /Radio 2
• LAN Latency From Short Range 

Router/FW/Radio 2 to PU2’s LAN Blade

User 2 to User 1: Reverse previous bullet!
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Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key 
3 - Make sample 

scenarios:
4 - Make list of 

metrics (indicate 
layout performance 

view
resource limiters 

from layout
What are sources 

of performance 
impacts in each?

sources, 
architecture ties if 

known)

6 - Find test events 7 - Circulate 5 - Add in required 
that have occurred:
Rate the maturity of 

each for each 
metric

results/vetting: 
What metrics and 

events are 
missing?

SWP metrics from 
documents (quality/ 

best practice/ 
critical resources) g)

8 - Use populated 
t i t i t 9 - Use architecture metrics matrix to 

plan future tests 
and mine data from 
existing data sets

tie-ins to improve 
software 

performance

10 - Determine 
repeat schedule
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Make a Software Performance Metrics Matrix

Consider the design levels and requirements
Aid ‘d k’ i i• Aid: ‘desk’ running scenarios
from: intended use, take to break (‘rainy day’), and requirements

Engineering Metrics

A breakout diagram or similar

Memory Availability

Memory g
can be used to gather the list Level/Scenario

Memory in
Orphan ThreadsOrphan Threads

Count of 
Other Users
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The Initial Matrix
• Metric name: title, short name and key words for tagging
• Why it should be collected, including Need Type
• An example of the ways to collect it: How?
• Any ties to requirements, directly or as contributors
• High-Level Type: What aspect of the overall design am I assessing?High Level Type: What aspect of the overall design am I assessing?

# Short Metric Title Why? Keywords (for How? Need High 
Level# Name Metric Title Why? Tagging) How? Type Level 
Type

1 Bcalls_
Count

Blade to blade calls 
(tagged by service, by 
process, by user, by

Limiting calls from blade 
to blade reduces time 
(due to bus use)

Blade, calls, count, 
service, process

Bus monitoring via 
Processing Unit 
against process

Efficiency Engineer

process, by user, by 
case/scenario/time

(due to bus use) against process 
monitor

2 HDCalls_
Count

Service traffic count to 
drives

Which services, 
applications, clients of 
applications are hitting 

User, service, raid, 
calls

Process-message 
snapshots and 
parse (or logging 

Efficiency Engineer

pp g
the drives often.  The 
more often RAM is used 
in lieu of the drives, the 
quicker the app will run.

p ( gg g
parse) for OS+bus
capture (log parse)
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Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key 
3 - Make sample 

scenarios:
4 - Make list of 

metrics (indicate 
layout performance 

view
resource limiters 

from layout
What are sources 

of performance 
impacts in each?

sources, 
architecture ties if 

known)

6 - Find test events 7 - Circulate 5 - Add in required 
SWP metrics from that have occurred:

Rate the maturity of 
each for each 

metric

results/vetting: 
What metrics and 

events are 
missing?

SWP metrics from 
documents 
(quality/best 

practice/critical 
resources) gresources)

8 - Use populated 
t i t i t 9 - Use architecture metrics matrix to 

plan future tests 
and mine data from 
existing data sets

tie-ins to improve 
software 

performance

10 - Determine 
repeat schedule
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Adding Metrics Using Existing Matrix Guidance 

Use list of 20 minimums to fill in list made from scenarios
Thi id t f t i th t i ht t h d f St 4• This provides a set of metrics that might not have emerged from Step 4 
scenarios, but come from experience with similar systems

Add quality metrics related to software performanceq y p

Add guidance from requirements documents

Sample Key Metrics for Software Performance

# Short Name Metric Title Why? How?

1 HDPart Ut Partition/disk usage over Avoid overfilling partitions (which can Repeated capture1 HDPart_Ut Partition/disk usage over 
time/scenario/ factor

Avoid overfilling partitions (which can 
slow or stop a system); determine 
which situations stress disks

Repeated capture 
from OS

2 LAN_Util Platform LAN utilization Prevent overuse of LAN on platform; SNMP MIB from 
watch for processes that could be 
done in blade instead of over LAN

routers

3 RAM_Util RAM utilization (by client, 
service, application) over time

Prevent over-utilization, prevent 
resource hogging/application

Repeated capture 
from OS
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service, application) over time resource hogging/application from OS



Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key 
3 - Make sample 

scenarios:
4 - Make list of 

metrics (indicate 
layout performance 

view
resource limiters 

from layout
What are sources 

of performance 
impacts in each?

sources, 
architecture ties if 

known)

6 - Find test 
events that have 7 - Circulate 5 - Add in required events that have 

occurred:
Rate the maturity 
of each for each 

metric

results/vetting: 
What metrics and 

events are 
missing?

SWP metrics from 
documents (quality/ 
best practice/critical 

resources) metric g)

8 - Use populated 
t i t i t 9 - Use architecture metrics matrix to 

plan future tests 
and mine data from 
existing data sets

tie-ins to improve 
software 

performance

10 - Determine 
repeat schedule
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Testing/Simulation Types

Cube of ‘Realism’ (Omitting Network*)

Assess realism per test event
1. Software

• Mod=Modeled 
• Sim=Simulated
• Proto=Prototype
• EB=Early Build
• LB=Later Build• LB=Later Build
• Mat=Mature

2. Hardware
• Sim=Simulated

tw
ar

e 

• EP=Early Prototype
• LP=Late Prototype
• IP=Initial Production
• FP=Full Production

A

S
of

t • FP=Full Production
3. Scale

• SB/MB=Single Blade/Multiple Blades
• PU/MPU=Process Unit/Multiple PUs

Hardware 
• SS=Single System
• LS=Limited Multiple System
• PS=Partial Scale
• FS=Full Scale* One could extend to ‘Network’ for a 4th Dimension

20
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• FS=Full Scale

So, Event A might be [Proto/Sim,EP/LP,LS] for example.
*=N.B. One could extend to network scale for a 4th Dimension

 One could extend to Network  for a 4 Dimension



Test for Realism

Realism varies by metric inside each test event due to available 
d i ftest assets and timeframes

Test targeted at reducing one set of risks might collect data on otherTest targeted at reducing one set of risks might collect data on other 
related areas as a side effect

Review of full test artifacts can mine for ‘off-target’ collections

Off target metric collections might be at a lower fidelity level thanOff-target metric collections might be at a lower fidelity level than 
metric included in risk target of test
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Trending and Correlation
U

 U
til

. %

BladeA,PU1,System1

U
 U

til
. %

BladeA, PU2,System2

Time

C
P

U

BladeB,PU1,System1

BladeC, PU1,System1

ar
e 

 

Time

C
P

U

BladeB, PU2,System2

BladeC, PU2,System2

ar
e 

 

Other correlations
• Regression comparisons?

M
id

dl
ew

a
C

al
ls

BladeA,PU1,System1

BladeB,PU1,System1
BladeC, PU1,System1 M

id
dl

ew
a

C
al

ls

BladeA, PU2,System2

BladeB, PU2,System2

BladeC, PU2,System2

• Gap analysis; compare 
w/desired performance

Tie to architecture (design, 
various levels)

Time

ch
e 

H
its

BladeA,PU1,System1

BladeB PU1 System1

Time
he

 H
its

BladeA, PU2,System2

various levels)

Time

C
a BladeB,PU1,System1

BladeC, PU1,System1

Time

C
ac

h

BladeB, PU2,System2

BladeC, PU2,System2

System Architecture;

Scenario X, Step X

System Architecture; 
Software Architecture

Which cross correlations have a payoff?
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Which cross correlations have a payoff?



Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key 
3 - Make sample 

scenarios:
4 - Make list of 

metrics (indicate 
layout performance 

view
resource limiters 

from layout
What are sources 

of performance 
impacts in each?

sources, 
architecture ties if 

known)

6 - Find test events 7 - Circulate 5 - Add in required 
that have occurred:
Rate the maturity of 

each for each 
metric

results/vetting: 
What metrics and 

events are 
missing?

SWP metrics from 
documents (quality/ 
best practice/critical 

resources) g)

8 - Use populated 
t i t i t 9 - Use architecture metrics matrix to 

plan future tests 
and mine data from 
existing data sets

tie-ins to improve 
software 

performance

10 - Determine 
repeat schedule
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Who Vets the SWP Metrics Matrix? 

Testing groups are usually scattered in various system groups and at 
program levelprogram level

Bring representatives of each group together to examine each iteration 
of metrics matrix

• Limit attendance to those who understand test metrics and fidelity levels
• Honesty not spin is importantHonesty, not spin, is important
• Get leadership backing

Vet matrix with this newly-formed Technology Interchange Group (TIG).
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Vetted Matrix and Procedure Linkage

Use matrix as a starting point for discussion for initial TIG meeting
Di t i d t W thi i d?• Discuss matrix data: Was anything missed?
– All that has happened to date: Does it include all test events?
– Knowledge of events at each scale: Does it capture the correct realism and scale of 

h t?each event?
• Revise matrix

– Include missed or incomplete items discovered
– Gain consensus on correctness/completeness of metrics: Are we measuring the 

right performance? Does the list account for SWP issues that may emerge later?

Re-circulate to confirm results
• Store matrix in configuration-controlled, commonly accessible location 

(Sharepoint, Wiki, etc.) 
• Encourage TIG to comment and distribute to their teams for commentg
• Collect comments, confirm veracity of updates with TIG, revise matrix

Repeat until there is a strong confidence/consensus in matrix
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Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key 
3 - Make sample 

scenarios:
4 - Make list of 

metrics (indicate 
layout performance 

view
resource limiters 

from layout
What are sources 

of performance 
impacts in each?

sources, 
architecture ties if 

known)

6 - Find test events 7 - Circulate 5 - Add in required 
that have occurred:
Rate the maturity of 

each for each 
metric

results/vetting: 
What metrics and 

events are 
missing?

SWP metrics from 
documents (quality/ 
best practice/critical 

resources) g)

8 - Use populated 
t i t i t 9 - Use architecture metrics matrix to 

plan future tests & 
mine data from 

existing data sets

tie-ins to improve 
software 

performance

10 - Determine 
repeat schedule
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Metrics/Planning for Metrics Collection using 
h M ithe Matrix

Insert metrics with low event coverage into future test events.g
• What metrics (rows) in the matrix have no associated events (i.e. empty 

columns)? Which metrics were only measured at a low scale or fidelity?
• Insert metrics into event plans and insert planned events into the matrixInsert metrics into event plans and insert planned events into the matrix

Make metric list a standard minimum for tests at any scale

Create correlation standards and a history of what correlations have 
lead to problem discoverylead to problem discovery

Agree on initial conditions for tests 
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Ideas for Entry Criteria: Metrics Infrastructure

Consolidated Metrics Library Database
C l t d d i l i t• Complex trends and simple points

• Easily accessible by architects/engineers/development/other test groups
• Metadata tagging using a standardgg g g

Insert into test schedule
R f t t t t l i th h TIG• Run future test event planning through TIG

• Invite group edits to matrix 
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Software Performance 10-Step Method

1 - Make SOS SOA 2 - Review key 
3 - Make sample 

scenarios:
4 - Make list of 

metrics (indicate 
layout performance 

view
resource limiters 

from layout
What are sources 

of performance 
impacts in each?

sources, 
architecture ties if 

known)

6 - Find test events 7 - Circulate 5 - Add in required 
that have occurred:
Rate the maturity of 

each for each 
metric

results/vetting: 
What metrics and 

events are 
missing?

SWP metrics from 
documents (quality/ 
best practice/critical 

resources) g)

8 - Use populated 
t i t i t

9 - Use 
hit t timetrics matrix to 

plan future tests & 
mine data from 

existing data sets

architecture tie-
ins to improve 

software 
performance

10 - Determine 
repeat schedule
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Software Performance Management: A Team 
EffEffort

SOA SoS Program

Internal  P iCOTS/GOTS External 

... ...

Software 
Service 

Developers

Processing 
Hardware 
Developers

System 
Integrator

Network Unit 
Providers

COTS/GOTS
Services 

Developers

Software 
Service 

Developers

Test Group Test Group Test Group Test Group Test GroupTest Group

SoftwareSoftware 
Performance TIG
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Relating Architecture to Metrics 

It is useful with a vetted metrics matrix to tie each metric to architecture
U ti t i f• Use ties to improve performance

There are likely no orphan metrics; they are just more complex to trace y p ; y j p
to architecture and design

R t d l f hi h fid lit d li ti t iRepeated columns of higher fidelity and realistic events improve 
confidence that the metric is covered and performance quantified; 
use these to plan tests

Architecture and design elements tied to performance will gain 
confidence with successive events; again test planningconfidence with successive events; again test planning
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Conclusions

Understanding software performance for a SoS SOA system is complex; 
managers need to:managers need to:

• Understand the system’s respective performance affecting levelsy g
• Develop a metrics list derived from scenarios and other sources
• Tie in test events to make the metrics matrix
• Have a way to circulate the matrix by understanding the organization• Have a way to circulate the matrix by understanding the organization
• Feedback the matrix and metrics testing results to architecture leads
• Keep the matrix current or status will be unknown

32
SSTC 2010
J. Wessel, B. Meyer  May 2010
© 2010 Carnegie Mellon University



BACK-UP SLIDES
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Acronym List

CM Configuration Management
COTS Common Off The Shelf
CPU Central Processing Unit
DoD U.S. Department of Defense 
DRAM Dynamic Random Access MemoryDRAM Dynamic Random Access Memory 
E2E End-to-End
FW Fire Wall
GiG Gl b l I f ti G idGiG Global Information Grid 
GUI Graphical User Interface
HD Hard Drives
H/W Hardware
LAN Local Area Network
LUT Limited User Test
IPT Integrated Process Team
M&S Modeling and Simulation
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Acronym List

OS Operating System
PU Processing Unitg
RAID Redundant Array of Independent Disks 
RAM Random Access Memory
RFP Request For ProposalRFP Request For Proposal
SE Systems Engineering
SEC Army Software Engineering Center
SOA S i O i t d A hit tSOA Service Oriented Architecture
SoS System of Systems
SW Software
SWP Software Performance
TIG Technology Interchange Group
TRL Technical Readiness Level
WAN Wide Area Network
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Services

“Services and applications are defined as primarily software based 
components which perform specific functions using standardcomponents which perform specific functions using standard 
interfaces. A service is defined as a mechanism to enable access to 
one or more capabilities, where the access is provided using a 
prescribed interface and is exercised consistent with constraints 

d li i ifi d b th i d i ti ( f ) Aand policies as specified by the service description (reference w). A 
service is a function that is well-defined, self contained, and does 
not depend on the context or state of other services. It easily allows 
for reuse in yet to be determined functions Applications arefor reuse in yet to be determined functions. Applications are 
designed to perform a specific function directly for the user or for 
another application.” 
US DoD CJCSI 6212.01E, 15 December 2008US DoD CJCSI 6212.01E, 15 December 2008
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System of Systems:

See “Exploring Enterprise, System of Systems, and System and Software Architectures” 
by Paul C. Clements, SEI: by au C C e e ts, S
http://www.sei.cmu.edu/library/abstracts/presentations/22jan2009webinar.cfm

“System of Systems (SoS) Architecture 
• A SoS is a set or arrangement of systems that results when independent and useful systems are A SoS is a set or arrangement of systems that results when independent and useful systems are 

integrated into a larger system that delivers unique capabilities. 
• Varieties: 
� Directed: SoS objectives, management, funding and authority in place; systems are 

subordinated to the SoSsubordinated to the SoS 
� Acknowledged: SoS objectives, management, funding and authority in place; systems retain 

their own management, funding and authority in parallel with the SoS 
� Collaborative: No objectives, management, authority, responsibility, or funding at the SoS 

level; systems voluntarily work together to address shared or common interest 
� Virtual: Like collaborative, but systems don’t know about each other (for example, the 

Internet)”
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rights of the trademark holder.
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Engineering Institute, a federally funded research and development center. The 
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permit others to do so, for government purposes pursuant to the copyright license under 
the clause at 252.227-7013.
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